NBRP Rat No: 0299 |
Strain name: LEW-Tg(Gt(ROSA)26Sor-luc)11Jmsk |
Commmon Name: LEW-Tg(Rosa-luc)11Jmsk, Luc11 |
Rat Genome Database |
Principal Investigator: |
Eiji Kobayashi Center for Molecular Medicine, Jichi Medical School 3311-1, Yakushiji, Shimono-shi, Tochigi 329-0498 Tochigi Japan |
Tel: 0285-58-7446 Fax: 0285-44-5365 |
Email: eijikoba@jichi.ac.jp |
Preservation Status: |
Embryo Sperm Living Animals |
 |
![]() |
Coat Color |
|
Inbred Generations |
F11(March 2012) |
Usage Restrictions |
In publishing, the references designated by the DEPOSITOR are requested to be cited. |
Genetic Status |
|
Comercial Availability |
|
|
Research Category |
|
Gene Affected |
luc: luciferase, firefly |
Origin |
This strain was established at Jichi Medical School. This transgenic rat was originated from LEW (RT1l) strain purchased from Charles River Japan. |
Strain characteristics |
This strain expresses luciferase driven by the gene trap ROSA 26 promoter. |
Breeding Conditions |
Good breeding performance. |
Genotyping |
Genotyping protocol for Luc |
References |
Hladíková Z, Voglova B, Pátíková A, Berkova Z, Kříž J, Vojtíškov A, Leontovyc I, Jirák D, Saudek F.
Bioluminescence Imaging In Vivo Confirms the Viability of Pancreatic Islets Transplanted into the Greater Omentum.
Mol Imaging Biol. 2021 Oct;23(5):639-649.
Galisova A, Herynek V, Swider E, Sticova E, Pátikova A, Kosinova L, Kriz J, Hajek M, Srinivas M, Jirak D.
A Trimodal Imaging Platform for Tracking Viable Transplanted Pancreatic Islets In Vivo: F-19 MR, Fluorescence, and Bioluminescence Imaging.
Mol Imaging Biol. 2019 Jun;21(3):454-464.
Herynek V, Turnovcova K, Galisova A, Kaman O, Marekova D, Koktan J, Vosmanska M, Kosinova L, Jendelova P.
Manganese-Zinc Ferrites: Safe and Efficient Nanolabels for Cell Imaging and Tracking In Vivo.
ChemistryOpen. 2019 Jan 23;8(2):155-165.
Gálisová A, Fábryová E, Sticová E, Kosinová L, Jirátová M, Herynek V, Berková Z, Kříž J, Hájek M, Jirák D.
The Optimal Timing for Pancreatic Islet Transplantation into Subcutaneous Scaffolds Assessed by Multimodal Imaging.
Contrast Media Mol Imaging. 2017 Dec 26;2017:5418495
Gálisová A, Fábryová E, Jirák D, Sticová E, Lodererová A, Herynek V, Kříž J, Hájek M.
Multimodal Imaging Reveals Improvement of Blood Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem Cells.
Mol Imaging Biol. 2017 Feb;19(1):15-23.
Nakabayashi A, Kamei N, Sunagawa T, Suzuki O, Ohkawa S, Kodama A, Kamei G, Ochi M.
In vivo bioluminescence imaging of magnetically targeted bone marrow-derived mesenchymal stem cells in skeletal muscle injury model.
J Orthop Res. 2013 May;31(5):754-9.
Kodama A, Kamei N, Kamei G, Kongcharoensombat W, Ohkawa S, Nakabayashi A, Ochi M.
In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model.
J Bone Joint Surg Br. 2012 Jul;94(7):998-1006.
Hata T, Iwasaki J, Hishikawa S, Fujimoto Y, Uemoto S, Kobayashi E.
Development of a portocaval shunt using a small intestinal segment in rats.
Microsurgery. 2010 May;30(4):302-6.
Iwasaki J, Hata T, Hishikawa S, Fujimoto Y, Uemoto S, Murakami T, Kobayashi E.
Use of rat segmental intestine for fetal pancreatic transplantation.
Microsurgery. 2010 May;30(4):296-301.
Hakamata Y, Murakami T, Kobayashi E.
"Firefly rats" as an organ/cellular source for long-term in vivo bioluminescent imaging.
Transplantation. 2006 Apr 27;81(8):1179-84. |
Additional strain information |
LEW |
|
|